α-Actinin-4 Is Essential for Maintaining the Spreading, Motility and Contractility of Fibroblasts
نویسندگان
چکیده
BACKGROUND α-Actinins cross-link actin filaments, with this cross-linking activity regulating the formation of focal adhesions, intracellular tension, and cell migration. Most non-muscle cells such as fibroblasts express two isoforms, α-actinin-1 (ACTN1) and α-actinin-4 (ACTN4). The high homology between these two isoforms would suggest redundancy of their function, but recent studies have suggested different regulatory roles. Interestingly, ACTN4 is phosphorylated upon growth factor stimulation, and this loosens its interaction with actin. METHODOLOGY/PRINCIPAL FINDINGS Using molecular, biochemical and cellular techniques, we probed the cellular functions of ACTN4 in fibroblasts. Knockdown of ACTN4 expression in murine lung fibroblasts significantly impaired cell migration, spreading, adhesion, and proliferation. Surprisingly, knockdown of ACTN4 enhanced cellular compaction and contraction force, and increased cellular and nuclear cross-sectional area. These results, except the increased contractility, are consistent with a putative role of ACTN4 in cytokinesis. For the transcellular tension, knockdown of ACTN4 significantly increased the expression of myosin light chain 2, a element of the contractility machinery. Re-expression of wild type human ACTN4 in ACTN4 knockdown murine lung fibroblasts reverted cell spreading, cellular and nuclear cross-sectional area, and contractility back towards baseline, demonstrating that the defect was due to absence of ACTN4. SIGNIFICANCE These results suggest that ACTN4 is essential for maintaining normal spreading, motility, cellular and nuclear cross-sectional area, and contractility of murine lung fibroblasts by maintaining the balance between transcellular contractility and cell-substratum adhesion.
منابع مشابه
a-Actinin-4 Is Essential for Maintaining the Spreading, Motility and Contractility of Fibroblasts
Background: a-Actinins cross-link actin filaments, with this cross-linking activity regulating the formation of focal adhesions, intracellular tension, and cell migration. Most non-muscle cells such as fibroblasts express two isoforms, a-actinin-1 (ACTN1) and a-actinin-4 (ACTN4). The high homology between these two isoforms would suggest redundancy of their function, but recent studies have sug...
متن کاملPodocyte Injury Associated with Mutant α-Actinin-4
Focal segmental glomerulosclerosis (FSGS) is an important cause of proteinuria and nephrotic syndrome in humans. The pathogenesis of FSGS may be associated with glomerular visceral epithelial cell (GEC; podocyte) injury, leading to apoptosis, detachment, and "podocytopenia", followed by glomerulosclerosis. Mutations in α-actinin-4 are associated with FSGS in humans. In cultured GECs, α-actinin-...
متن کاملAssembly of non-contractile dorsal stress fibers requires α-actinin-1 and Rac1 in migrating and spreading cells.
Cell migration and spreading is driven by actin polymerization and actin stress fibers. Actin stress fibers are considered to contain α-actinin crosslinkers and nonmuscle myosin II motors. Although several actin stress fiber subtypes have been identified in migrating and spreading cells, the degree of molecular diversity of their composition and the signaling pathways regulating fiber subtypes ...
متن کاملSynaptopodin couples epithelial contractility to α-actinin-4–dependent junction maturation
The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell-cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in ...
متن کاملCorrection: Synaptopodin couples epithelial contractility to α-actinin-4–dependent junction maturation
During normal epithelial maturation, actin and α-actinin-4 accumulated at the cell junction over a period of several days (Fig. 1 A). By the second day post-confluence (2 dpc), most canonical junctional components, E-cadherin, α-catenin, and β-catenin, p120-catenin, and ZO-1, were already present (Fig. 1, A and B). However, vinculin has not been targeted at this early stage of junction developm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010